THE NATURE OF MATTER
THE
NATURE
OF MATTER
STANDARD MODEL PARTICLES AND
FORCES
CHAPTER 2
Section 1 Standard Model Particles1 Singlets - Electrons and Positrons
2 Doublets - Neutrinos and Photons
3 Triplets - QuarksSection 2 Standard Model Particle Forces
1 The Strong Force
2 The Weak Force
3 Weak Force Particle Bonds
4 Electromagnetic Force
SINGLETS 1
Singlets
Once energy quanta and unit particles of matter were distinguished as separate components
of the electron, the reason for the curious half integer spin or quantum angular
momentum of electrons was obvious which made perfect sense and fit the math perfectly.
The 1/2 spin means the bound structural energy of the electron is in a closed loop
rotation about the host singlet unit particle of matter and the energy wave traveling
around the electron requires two complete rotations to complete one full wave. One
rotation is only half the fundamental wavelength and the energy is therefore 180
degrees out of phase from its starting phase at one rotation.
In other words, the energy bound to the electron traverses half of its wavelength
each energy rotation, and requires two rotations to be back in phase the same phase.
The model above is a logical model, not a physical model. Energy rotation is a complex
rotation better visualized with graphs of wave functions like the ones below which
show a wave packet in closed loop rotation.
Energy rotation about a host unit particle of matter is described by the quantum
wave function which describes the wave packet that is carved by the energy quanta.
The polar diagrams of three pertinent phases are plotted below.
Image from the Picture book Of Quantum Mechanics
Siegmund Brandt / Hans Dieter Dahmen
Springer-Verlag 1995 New York
Charged energy rotation generates a magnetic field that can be viewed as being caused
by a current around the center of the unit particle of matter.
In the illustrations below, an electron and a positron are shown with a loop of energy
causing a current around the host unit particle of matter. The current causes a magnetic
field with a direction of force is dictated by the direction and charge of the current.
The magnetic field directions are indicated by the large elliptical loops and the
'N' and "S" which indicate the magnetic dipoles.
Quantum Intrinsic Angular Momentum
A known property of electrons is quantum spin or intrinsic angular
momentum. The quantum spin of an electron is not the same as the rotation of a solid
body.
The rotation obviously involves the movement of energy around matter rather than
the rotation of the matter itself because movement of charged matter involves magnetic
flux and electromagnetic interactions happen at exactly the speed of light, not faster
than light, as energy rotation in the wave function is.
DOUBLETS
Spin Zero Doublets - Oceanic Particles
Spin 1/2 Doublets - Neutrinos
Spin 1 Doublets - Photons
The doublet particles have no rest-mass as doublets have no internal energy in their construction. Doublets may only have momentum energy which is external energy.
Doublets
The doublets are composed of one positive unit and one negative unit, which is
therefore neutral in overall charge Doublets have no rest-mass because they have
no energy in the structure.
The energy of each particle is indicated by a symbolic circle with an arrow around
the unit charge hosting the energy. The 'N' indicates the direction of north on the
magnetic dipole.
The reason the photon angular momentum adds to unitary instead of zero is the two
energy particles are 180° out of phase, so multiply one energy unit particle
by -1.
(The following notation stays with the already established neutrino notation of negative
unit hosting energy being +1/2. Or we could assume the neutrinos are 180° out
of phase.)
(+1/2) + (-1/2)(-1) = +1 photon(-1/2) + (+1/2)(-1) = -1 anti-photon
SPIN ZERO DOUBLETS - OCEANIC PARTICLES
It is proposed that the unit particles of matter which make up the
background oceanic particles are the fundamental root particles from which form the
internal structure of all known matter in the universe. All matter is composed of
the positive and negative unit charge unit particles of matter. All unit particles
of matter originated as massless doublet background oceanic particles.
The most fundamental units of charged matter are the components of the background
ocean of pure matter particles which are composed of a bound state of two units of
charged matter, one positive and one negative, resulting in a overall neutral particle.
Background oceanic particles are the root particles of all matter. Background oceanic
particles are particles made of pure matter, particles which have no energy component.
Background oceanic particles are composed purely of matter with no energy.
Higgs Bosons
Are the background ocean particles the Higgs bosons?
The Higgs field is the mass-generating field and it is said the interaction of rest
mass energy with the background mass-causing field is what causes the manifestation
of mass.
SPIN 1/2 DOUBLETS - NEUTRINOS
For the neutrinos, it is proposed that only the one unit charge host has bound energy
which explains why a doublet substructure could have spin 1/2.
Neutrinos have angular momentum energy imparted onto them with singular direction of rotation.
SPIN 1 DOUBLETS - PHOTONS
A Unit Photon is defined as a unitary unit of energy, one hn;
where h is Planck's constant and n is the frequency.
Photons have two degrees of freedom indicating the energy configuration is two closed
loops, not one.
Unit photons are a pair of units of energy particles that are bound to two oppositely
charged component leptinos. The unit photon energy alternates between the unit charge
structured particle's motion and the reaction of the background ocean to the movement
of charge, which is magnetic flux.
Should be electrons have a spin of one (one direction of angular momentum energy).And
photons should have a spin of two (two direction of angular momentum energy).
The reason the photon angular momentum adds to unitary instead of zero is the
two energy particles are 180° out of phase, so multiply one unit by -1.
(+1/2) + (-1/2)(-1) = +1 anti-photon(-1/2) + (+1/2)(-1) = -1 photon
TRIPLETS
Triplets
Anything offered in as a configuration of mass-energy and the unit particles of matter
within quark particles is of course, purely speculative. The triplet of unit matter
substructure of quarks is certain, but the actual structure of the energy and the
unit particles of matter within the quark is as yet not definitely known.
An odd-number of component unit charges dictates that the particle will have a net
charge. The electrical force of repulsion of like charge also insures that an odd-numbered
unit charge particle will occupy a larger volume of space.
Since the strong force manifests SU(3) symmetry, it might be assumed that at strong
force interaction distances that the triplet energy rotation of matter can be considered
to be co-located about the same origin.
QUARK MAGNETIC DIPOLES
STANDARD MODEL PARTICLE
FORCES
SECTION 2
STRONG FORCE BONDS
The strong force bonds are defined here primarily by the distance
the unit particles of matter are from each other when in equilibrium within the structure
of the particle. Strong force bonds involve distances that are the closest possible.
Strong force bond distances have been heretofore regarded as equal, in other words,
the math indicates the unit charge components have the same origin, hence SU(3).
For the strong force with three U(1) electromagnetic unit electrical charge particles
at the same origin in the quark, group multiply them together, and then origin of
the SU(3) symmetry is pretty clear.
Matter is defined in this proposition as the positive and negative unit charge particles
of matter which compose the oceanic particles.
PRIMARY
BOND
The primary bond is the bond between a positive and a negative unit
of matter within an oceanic particle. The internal bond of a doublet is referred
to as a primary strong force bond.
The primary bond represents the closest possible distance between the two opposite
charge unit particles.
The doublet has no internal structural energy. The unit particles of matter are bound
together in the doublet by the force of attraction between particles of opposite
electric charge.
The force the binds an oceanic particle acts even with no energy is in the particle. The primary bond is the bond that holds an oceanic particle together, the primary force of attraction being the attraction between positive and negative charged units of matter.
Interquark Strong Force Bond
The bond between the unit particles of matter between quarks is referred to
as a secondary strong force bond. The secondary strong force bond is the interquark
bond, the bond that binds quarks to quarks.
WEAK FORCE BONDS
The weak nuclear force is the manifestation of an electrical bond
between a unit of matter and a host quark that is formed through the influence of
a doublet. The weak force bond exhibits partial folding of the electrical fields
of the bound particles.
Multiple weak force bonds are hypothesized for a single host particle. The multiple
weak force bonds explain why a kaon can decay into either two or three pions.
The weak force bond binds a unit matter to a host quark through the influence
of a doublet.
A weak force bond is an electrical bond that binds a lepton and a neutrino
to a host particle. The structure of the weak force bond is not clear. Because weak
force interactions are very different in nature from strong force interactions, it
is clear that the electron and the neutrino are bound to the neutron in a different
type of structure from that found in the strong bond. Since the configuration of
the energy and matter of the electron within the neutron is not certain, and since
the energy and matter of the electron may not even be combined as a individual unit
within the neutron, it is mis-leading to state that a weak force bond involves a
lepton and neutrino as the energy may be distributed.
Considering that the decay products of the neutron are limited to a proton, an anti-neutrino,
and an electron, it seems probable that the proton maintains its individual identity
within the neutron. The additional mass of the neutron above that of the proton and
electron is due to the weak bond structure itself. Neutrons are half integer spin
particles, therefore, the sum of the parts must equal 1/2. Assuming the neutron is
traveling in the natural direction on its spin axis, the proton component then has
a spin of +1/2, the anti-neutrino has a spin of +1/2 and the electron has a spin
of -1/2.
In the diagram above, the smaller arrows indicate the natural direction on the
spin axis and the larger arrows indicate the direction of travel. Given the above
configuration, when the electron and anti-neutrino are ejected away from the proton
during decay, the electron will have left hand spin and the anti-neutrino right hand
spin.
The electron ejected away from the proton in neutron decay in the above example has
left hand spin. The leptons inside the neutron must have their magnetic fields aligned,
which is the same as aligning the natural directions of the spin axes. The electron
is ejected away from the proton in neutron decay in the natural direction of its
spin axis.
The alignment of the composing leptons explains why electrons emitted in weak interactions
tend to have left hand spin and why positrons tend to have right hand spin. Exceptions
to the rule, such as a right hand spin electron, would have to be caused by an interaction
with another particle which caused the electron to flip on its spin axis.
Comparing the neutron to the proton indicates that the magnetic dipole moment is
substantially altered by the weak force bonded lepton. The magnetic dipole moment
of a proton is +2.8 where the magnetic dipole moment of an electron is -1.9. The
magnetic dipole moment of the neutron indicates that the neutron has a negatively
charged shroud covering the proton. The proposed view of the weak force bound electron
in the neutron is that the electrical field of the electron is folded over the proton.
The weak force bond represents partial folding of the electrical field of a lepton.
The tertiary and then secondary strong bonds represent increasingly more complete
folding of the electrical fields in their respective bond structures. The primary
strong bond within a neutrino represents the most complete folding of a lepton's
electrical field.
The primary strong bond in the neutrino is involved in the weak force bond. Under
the influence of the neutrino's primary strong bond, the fields of the electron and
of a positron interior to the proton are folded. The folding of the electron's field
interior to the proton allows the electron to interact primarily with a single positron
within an up quark inside the proton. By interacting primarily with a single positron
in the proton, the weakly bound electron can be much closer to the proton than is
possible in the hydrogen atom where the electron is repelled by the electrons inside
the proton.
Consider then that the electron-neutrino combination is bound directly to an individual
positron in one of the up quarks of the proton. As will be seen, the attachment of
the electron-neutrino combination to a particular lepton of the host particle is
valuable in describing the decay of a charged pion.
Question: An electron cannot be a component of a neutron because the electron is a light particle with a large wave function and the large wave function of the electron cannot fit inside the much smaller wave function of the much more massive neutron.
Answer: The electrical field of the electron, and its wave function, are
substantially altered by the weak force bond involving the neutrino and the proton
which form the neutron. The electron does not exhibit the wave function of an electron
when it is bound in the weak force bond within the neutron.
Possibly the electron's components, a single unit of matter and .51 MeV of energy
are not even still forming an electron structure at all. The bound electron is deformed
beyond recognition.
Wave functions of particles are not static, rather wave functions are dynamically
altered by the presence of the energy in the bonds.
The author's view is that the bound electron in a neutron as still being fundamentally
an electron in structure, it is just that the electrical field of the electron is
substantially altered by the weak force bound negative unit of matter that the electrical
field of the electron is deformed as a shroud over the positive charge of the underlying
proton.
THE NEUTRON AND THE WEAK FORCE
The weak nuclear force is the manifestation of an energetic bond between
a lepton and a host quark that is formed through the influence of a neutrino and
deforms the electrical field of the lepton around the host quark nullifying its charge.
The weak force bond represents partial folding of the electrical fields of the bound
lepton over of the host quark substructure.
Comparing the neutron to the proton indicates that the magnetic dipole moment is
substantially altered by the weak force bound electron. The magnetic dipole moment
of a proton is +2.79 units where the magnetic dipole moment of a neutron is -1.91
units. The magnetic dipole moment of the neutron indicates that the neutron has a
negatively charged shroud. The proposed view of the weak force bound electron in
the neutron is that the electrical field of the electron is partially folded over
the proton giving the proton a partial negative covering, which accounts for the
magnetic dipole moment of -1.91 units.
Consider the decay of a neutron. A neutron decays 100% of the time
into a proton, an anti-neutrino, and an electron. The decay is actually the breakdown
of the weak force bound electron bond which releases electron along its north magnetic
dipole with left hand bound energy.
WEAK FORCE PARTICLE BONDS
Kaons are proposed to be complex particle compounds formed from two
pions bound together by a weak force particle bond.
COMPLEX PARTICLE HYPOTHESIS Complex particle compounds are formed from pion or proton sub-units which are bound together through particle bonds. |
A particle bond binds two particle sub-units together into a complex particle compound.
The sub-units of a particle bond can be either protons or pions. The particle bond
is given a distinct name because it may be different in nature from the weak force
bond which is required to construct it.
First Order Kaons
The first order kaon decas into a charged pion and a neutral pion.
First Order Charged Kaons
K+
A decay of the positively charged kaon into a positive pion and a neutral pion is shown below.
Last Update: July 25, 1999
Comments: jrees@starlight-pub.com
Created April 4, 1996